Beneficial Use of CO₂ in Precast Concrete Production

DE-FE0004285

Yixin Shao, Yaodong Jia and Zaid Ghouleh McGill University, Montreal, QC Liang Hu 3H Company, Lexington, KY

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- The goals and objectives
- Benefits to the program
- Project overview
- Technical status
 - Summary on CO₂ uptake
 - Summary on cost analysis
- Accomplishment to date
- Summary

Brief Background

- Concrete is the world`s most used construction material (> 9 Btons per year)
- Concrete = aggregates + cement + water
- Consolidation & strength development with the hydration of cement (28 day standard)
- Carbonation accelerates cement hydration
 - CO₂ uptake by cement
- Concrete products in this project
 - Standard 8" concrete blocks
 - Standard 4' x 8' fiber-cement boards

The Goals

- Maximizing carbon uptake by carbonation (at least 20-25% by cement mass)
 - Each 8" concrete block shall take 0.75 lb CO₂
 - Each 4'x8' fiberboard shall take 10.5 lb CO₂
- Minimizing the CO₂ utilization cost
 The utilization cost shall be less than \$10/tCO₂
- Minimizing the CO₂ capture cost
 - The capture cost shall not exceed \$50/tCO2

Benefit to the Program

- Develop technologies that will support industries' ability to capture and utilize CO₂ at the vicinity of the sources: CCS in urban setting.
- CO₂ storage in concrete is permanent and stable in the form of calcium carbonates.
- 4.3 billion blocks/year in US, CO₂ sequestering potential almost
 1.5 Mt per year.
- 9.8 billion ft² fiber-cement board/year in US, CO₂ utilization equivalent to 1.36 Mt per year.
- Utilization by carbonation will continue for years to come. No time restraints!

Project Overview

- Developed carbonation process to achieve carbon uptake of 20-25% by cement mass
- Optimized the carbonation cost for practical utilization
- Optimized CO₂ capture cost (3H's self-concentrating absorption technology)
- Evaluated performance of carbonated products by comparing to conventional steam cured ones
- The success criteria: to meet all set goals

Summary on CO₂ Uptake

Static carbonation is energy-free, requires presetting of products and takes longer time.

Dynamic carbonation is faster, takes less time but requires energy to circulate the CO_2 gas.

CO₂ Uptake Calculation

 Mass gain method %CO2 $uptake = \frac{(Mass)_{aft,CO2} + (Mass)_{LostWater}}{(Mass)_{bef,CO2}} - (Mass)_{bef,CO2}$ M_{cement} 14 12 Mass curve method 10 Drv mix Concrete with w/c=0.26 Carbon uptake (%) 8 6 %CO2 uptake = $\frac{(\Delta M_{CO2})_{masscurve}}{M}$ 4 2 0 0 1200 2400 3600 4800 6000 7200

Time (second)

Thermal analysis or titration analysis

$$CO_{2} \ Content(\%) = \frac{M_{550} - M_{1000}}{M_{Cement}} = \frac{\Delta M_{CO2}}{M_{cement}}$$

(I) Summary on CO₂ Uptake

 For static carbonation, a process is developed for optimized carbon uptake:

- Presetting: achieve 50-60% water removal from concrete, making space for carbonate precipitation
- Carbonation: reaction between CO₂ and calcium compounds (C₂S, C₃S, Ca(OH)₂, C-S-H)
- "Residual gas disposal:" handling residual CO₂ left in chamber and not consumed by concrete.
- Water compensation: surface spray to saturation

Cement Based Building Products

8" concrete blocks (8"x8"x16") Target: 0.75 lb CO2 per 8" block

CO₂Claves for Blocks

Single block CO₂ Clave for both static and dynamic carbonation

CO₂Clave for static carbonation of multiple 8"-blocks or 1'x2' panels

CO₂Clave for Panels

CO₂Clave for both static and dynamic carbonation of 1'x2' panels

Results: Concrete Blocks

- Mix design of 8"-block of 16.5-kg (36-lb):
 - Cement = 1.6 kg (cement content 10%)
 - Water = 0.9 kg
 - Coarse aggregates = 5.6 kg
 - Fine aggregates = 8.4 kg

• The best results: CO₂ uptake = 0.35 kg (0.77 lb)/block

- Presetting = $11 h (25^{\circ}C and 25\% RH)$
- Wind velocity = 0.5 m/s
- Moisture removal = 53% (based on total water)
- **Carbonation** time = **4h** at gas pressure = 0.5 MPa
- Carbonation **strength** at 15h = **13 MPa**,
- Hydration strength (reference) after 28d = 12 MPa

Results: Fiber Panels

- Mix design of 1'x2'x0.5" panel of 3-kg (6.6-lb):
 - Cement = 2.2 kg (cement content = 73%)
 - Water = 0.53 kg
 - Cellulose fibers = 0.27 kg
- The best results: CO₂ uptake = 0.44 kg (0.97 lb)/1x2 panel
 - Presetting = $18 h (25^{\circ}C and 50\% RH)$
 - Wind velocity = 0.5 m/s
 - Moisture removal = 60% (based on total water)
 - Carbonation time = 2h at gas pressure = 0.5 MPa
 - Carbonation flexural strength at 20h = 5.8-8.5 MPa,
 - Hydration flexural strength (commercial product, 28d) = 6.9 MPa

(II) Summary on Cost Analysis

- Step 1: \$0
- Step 2: \$? (Energy is required to remove free water.)
- Step 3: \$0 (Energy-free since gas is pressurized.)
- Step 4: \$? (Energy is required to collect residual CO₂ in chamber)
- Step 5: \$0
- Step 6: \$0

Step 2: Cost of Presetting

 Laboratory setup measuring wind energy due to fan drying in a controlled environment (temperature and relative humidity)

Wind tunnel is designed to dry the block and measure the power needed to generate the desired wind to reach the target moisture level.

Wind tunnel is placed in an environmental chamber.

Presetting at 25°C and 25%RH

Presetting at 25°C and 50%RH

Cost of Presetting for Blocks

Table 1: Energy and cost for one ton CO2 utilization (calculated by 2941 blocks**)										
Wind velocity, m/s	Electrical power* needed to generate wind Per block, (W)	20±5	5℃ with 25±5 9	% RH	20±5℃ with 50±5% RH					
		Preset time to reach target moisture per block, (h)	Energy per tCO2, (kWh)	Cost, \$/tCO2	Preset time to reach target moisture per block, (h)	Energy per tCO2, (kWh)	Cost, \$/tCO2			
V1=0	0	20.4	0	0	Not possible	Not possible	Not possible			
V2=0.5	0.28	8.9	7.33	0.49	13.9	11.45	0.77			
V3=1.7	3.04	4.8	42.92	2.89	8.8	78.68	5.30			
V4=3.3	29.40	3.1	268.04	18.07	5.2	449.62	30.30			

*The cost of electricity: \$0.0674/kWh

**Total of 2941 blocks are required to take one ton of CO2 at carbon uptake of 0.34kg/block (=0.75lb/block)

Target moisture content: removal of 50% of free water

Cost of Presetting for Panels

Та	ble 2	Energy	and	cost	for	pan	els	(20±5℃)	
									Ξ

Environmental	Air	Fan Dry			One pa	inel	2273 panels (1 ton CO2 absorption) *		
	time, h	time, h	Wind velocity, m/s	Power of fan, W	Energy consumption, kWh	Cost /panel, \$**	Energy consumption, kWh	Cost /tCO2, \$*	
25±5% RH	17	1	0.5	0.28	2.80E-04	1.89E-05	6.36E-01	0.043	
50±5% RH	0	18	0.5	0.28	5.04E-03	3.40E-04	1.15E+01	0.772	
80±5% RH	0	18	1.7	3.04	5.47E-02	3.69E-03	1.24E+02	8.383	

*: For one ton CO2 absorption, the total number of panel needed is 1000/0.44=2273 panels (K-panel) **: Rate of electricity is 0.0674/kWh

Efficiency in Presetting by Wind

Step 4: Cost of "Residual gas disposal"

 Using 3H self-concentrating absorption technology is fast but the cost may go beyond \$10/t

2) Using "**self-cleaning**" method is energy-free and cost-free:

- Compact chamber design to allow desired CO₂ for target uptake rate
- Keep CO₂ at constant pressure with CO₂ valve on
- Keep the CO₂ mass constant with CO₂ valve off. This is the period called self-absorbing or self-cleaning.
- The zero pressure indicates zero CO₂ in chamber.

Capture of Residual CO₂ Using "Self-Cleaning" Technology

23

Results: CO₂ Capture Cost (**3H Company**)

- Using 3H proprietary self-concentrating absorption technology.
- Energy use evaluated by Worley Parsons. It was concluded that 3H technology could save 26% energy including compression and transport.
- The DOE baseline for CO₂ capture: the increase of cost of electricity due to CO₂ capture should be less than 35% including capital cost, transport, storage and monitoring.
 Worley Parsons confirmed that 3H technology had met the goal.
- It is possible to produce high purity CO₂ at \$36/t including capital cost, transport, storage and monitoring.

Accomplishments to Date

- A static carbonation process developed to achieve carbon uptake of 20-25% by cement mass.
- Near-surface dynamic carbonation process also developed for accelerated production.
- 8" Concrete block to take 0.77 lb CO₂ (target: 0.75lb)
- 1'x2' Fiber board can take 0.97 lb CO₂ (target: 0.65lb)
- 1 ton CO₂ captured at \$36 (capital cost, compression, transport, storage and monitoring). (target: \$50/ton)
- Utilization cost < \$1/tCO₂ at concrete plant with RH of 50% or lower. (target: \$10/ton)
- Carbonated concrete found to exhibit improved service life durability (more resistant to freeze-thaw damage, chloride permeation and sulphate attack).

Summary

- Maximum carbon uptake and minimum cost are challenging goals which are possible to achieve.
- If only process energy is included, CO₂ can be captured for \$10/t, which is competitive to natural gas.
- In presetting, increase in wind efficiency from 7% to 70% will significantly reduce the utilization cost.
- A simulation model is needed to predict the carbonation degree based on the plant conditions.
- The compact chamber design for "self-cleaning" shall be tested in large scale.

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- McGill University (Materials development, carbonation systems, performance assessment, cost analysis.)
- 3H Company (Self-concentrating absorption system, cost analysis, carbonation systems.)

Gantt Chart

Table 1, (Organizational o	chart (corre	cted in Q7 ነ	with no-cost ex	(tension)			
Quarter	Date	Task 1	Task 2	Task3	Task 4	Task 5	Task 6	Task 7
Q1	10/1-12/30,	Mc+3H,						
	2010	1.0						
Q2	1/1-3/30, 2011		Mc+3H,	Mc+3H,				
			2.1, 2.2	3.1,3.2				
Q3	4/1-6/30, 2011		Mc, 2.2	Mc,			Mc+3H,	
				3.1,3.2,3.3,3.4			6.1	
Q4	7/1-9/30, 2011	Mc+3H,	Mc, 2.2	Mc,	Mc, 4.1,			
		1.0,		3.2,3.3,3.4	4.3			
		agreement						
Q5	10/1-12/30,	Mc+3H,		Mc,3.4	Mc 4.1,4.3		1.0	
	2011	1.0,						
		agreement						
Q6	1/1-3/30, 2012		Mc, 2.2	Mc, 3.3, 3.4	Mc, 4.3		3H, 6.2	
Q7	4/1-6/30, 2012			Mc, 3.3	Mc, 4.3		3H, 6.2	Mc 7.1
Q8	7/1-9/30, 2012		Mc, 2.2		Mc, 4.3		3H, 6.2	Mc 7.1
Q9	10/1-12/30,					Mc, 4.2,	3H, 6.3,	
	2012					5.1, 5.2	Mc, 6.1	
Q10	1/1-3/30, 2013				Mc, 4.2		3H, 6.4	
Q11	4/1-6/30, 2013						Mc+3H,	
							6.4, 6.5	
Q12	7/1-9/30, 2013							Mc+3H,
								7.1,7.2

Q5 to Q8 are granted for no-cost extension in Budget Period 1.

Tasks to be completed: Task 5.0, performance evaluation; Task 6.5, Topical Report on Self-Concentrating Absorption Technology; Task 7.1 and 7.2, determine utilization cost .

Bibliography

- There is not yet peer reviewed publications. The following papers are in preparation:
- "Maximizing the carbon uptake in concrete blocks carbonation". (Task 2.1, 3.2, 4.1, 4.2)
- "Performance of fiber-cement panels produced by carbonation curing". (Task 2.2, 3.3, 4.3)
- "Freeze-thaw resistance of carbonated concrete products". (Task 5.1)
- "Minimizing the cost in CCSU through concrete production". (Task 6.3, 6.4, 7.1)
- "Studies on thaumasite sulphate attack on carbonated cement pastes". (Task 5.1)
- "Cost analysis of CO₂ capture using 3H self-concentrating absorption technology". (Task 6.2, 6.3, 6.4)